MFP series temperature sensor using the NTC resistance element, according to the different temperature environment or application, through the mature technology, fabricate into a variety of specifications of the sensor, customers can use directly without fabricating.

MFP-1 Series Sensor is simply connected to silicon rubber or other high temperature lead wire. NTC protect by silicon rubber tube or Teflon tube

Typical Applications	Features	
- Rice Cooker	-	Simply connected to high temperature lead wire
- Induction cooker		Protected by silicon rubber tube or Teflon tube.
- Ambient temp etc.		

Technical Data

Item	Parameter
Sensing Element	NTC Thermistor various R and B value on request
Temperature range	$-20^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
Response time	$\mathrm{T}_{0.63} \leq 60 \mathrm{~s}$ in air
Dissipation Factor	$\geq 2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Long-term stability	Drift $\leq 3 \%$ after 1000 h heat or cold store $\left(80^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C}\right)$
Dielectric Strength	$1500 \mathrm{~V}_{\mathrm{AC}}$
Insulation Resistance	$\geq 100 \mathrm{M} \Omega 500 \mathrm{~V}_{\mathrm{DC}}$

Ordering code

MFP-1
(1)
$\underline{X} \quad \underline{X X}$
$\frac{\mathrm{XXX}}{(3)}$
$\underset{(4)}{\underline{X}}$
XXX
X
$\underset{(7)}{X}$
$\underset{(8)}{X}$
\underline{x}
(2)
(5)
(6)
(8)
(9)

1. Housings Type.

Code	Description
MFE	Epoxy encapsulation type or injection molding type
MFT	Tubular type
MFL	Insert lead type
MFP-1	Line pressing type
MFP-2	Surface installation type
MFP-3	Multi-step type
MFP-4	Flange shape type
MFP-5	Hat shape tube type
MFP-6	Threaded fastening installation
MFP-7	Pipe clamp type

2. Sub-class: Housings shape.
3. Resistance value at $25^{\circ} \mathrm{C}$.
4. Resistance tolerance.

Code	Tolerance $\left(25^{\circ} \mathrm{C}\right) \%$	Code	Tolerance $\left(25^{\circ} \mathrm{C}\right) \%$
E	± 0.5	H	± 3.0
F	± 1.0	J	± 5.0
G	± 2.0	K	± 10.0

5. Beta value, unit: K .
6. Beta value Temperature code.

Code	T1/T2
A	$25 / 50$ (Default)
B	$25 / 85$
E	Defined by Customer

7. Wire type.
8. Wire length.

The $1^{\text {st }}$ and $2^{\text {nd }}$ digits are for the significant figures of the length and the $3^{\text {rd }}$ indicate the numbering of the zeros following.

Example: $1 \mathrm{~m}=102,10 \mathrm{~m}=103$.
9. Housings Drawing number.

